If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-12y-135=0
a = 1; b = -12; c = -135;
Δ = b2-4ac
Δ = -122-4·1·(-135)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{19}}{2*1}=\frac{12-6\sqrt{19}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{19}}{2*1}=\frac{12+6\sqrt{19}}{2} $
| F(0)=-20x-17 | | -(x-5)=-4(x+8) | | 3y-8=5y+8 | | -5/22+x/22=-1 | | (-4)*x*(-1)-(-2)^2=4 | | -4(a+14)=-35 | | 3(4x-5)=15x-60 | | (7y+10)^2=32 | | 2.5h=5 | | (7y+10)^2-32=0 | | G(6)=-1-7x6 | | (7y+10)2−32=0 | | 18=-6x+x-7 | | 3x+1=-4x-8 | | -4x(-2)=3x+(-5) | | -17g+16=-8−11g | | -8y+1=18−7y | | -3(x-14)=-48 | | 3r=4r+19 | | 20+14q=-16+5q | | -2(x-17)=-26 | | 9x+12+84=180 | | 6g+2(-7+2g)=1+g | | p=5.75 | | x8=24 | | 9/3+m/3=2 | | 15+(5-x)/x=0 | | 2,5y=4y+28,8 | | 7x+4+4+2x=58+3x | | 12=2(n-3) | | -1(1+7x)-6(-7-x)=40 | | -2(17-x)=-26 |